Search results for "Lie group"

showing 10 items of 100 documents

Multiplicative loops of 2-dimensional topological quasifields

2015

We determine the algebraic structure of the multiplicative loops for locally compact $2$-dimensional topological connected quasifields. In particular, our attention turns to multiplicative loops which have either a normal subloop of positive dimension or which contain a $1$-dimensional compact subgroup. In the last section we determine explicitly the quasifields which coordinatize locally compact translation planes of dimension $4$ admitting an at least $7$-dimensional Lie group as collineation group.

CollineationAlgebraic structureDimension (graph theory)Topology01 natural sciencesSection (fiber bundle)TermészettudományokFOS: MathematicsCollineation groupLocally compact space0101 mathematicsMatematika- és számítástudományokMathematicsAlgebra and Number TheoryGroup (mathematics)010102 general mathematicsMultiplicative function20N05 22A30 12K99 51A40 57M60Lie groupMathematics - Rings and AlgebrasSections in Lie group010101 applied mathematicsTranslation planes and speadsMultiplicative loops of locally compact quasifieldRings and Algebras (math.RA)Settore MAT/03 - Geometria
researchProduct

Lie Algebras Generated by Extremal Elements

1999

We study Lie algebras generated by extremal elements (i.e., elements spanning inner ideals of L) over a field of characteristic distinct from 2. We prove that any Lie algebra generated by a finite number of extremal elements is finite dimensional. The minimal number of extremal generators for the Lie algebras of type An, Bn (n>2), Cn (n>1), Dn (n>3), En (n=6,7,8), F4 and G2 are shown to be n+1, n+1, 2n, n, 5, 5, and 4 in the respective cases. These results are related to group theoretic ones for the corresponding Chevalley groups.

17B05[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]Non-associative algebraAdjoint representationGroup Theory (math.GR)01 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]Graded Lie algebraCombinatoricsMathematics - Algebraic Geometry0103 physical sciences[MATH.MATH-RA] Mathematics [math]/Rings and Algebras [math.RA]FOS: Mathematics0101 mathematicsAlgebraic Geometry (math.AG)[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR]MathematicsDiscrete mathematicsAlgebra and Number TheorySimple Lie group010102 general mathematics[MATH.MATH-RA]Mathematics [math]/Rings and Algebras [math.RA]20D06[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]Mathematics - Rings and AlgebrasKilling formAffine Lie algebra[ MATH.MATH-RA ] Mathematics [math]/Rings and Algebras [math.RA]Lie conformal algebra[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG]Adjoint representation of a Lie algebraRings and Algebras (math.RA)17B05; 20D06010307 mathematical physics[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]Mathematics - Group TheoryJournal of Algebra
researchProduct

Cohomology of Lie algebras

1995

This chapter is devoted to studying some concepts that will be extensively used in the last chapters, namely the cohomology of Lie algebras with values in a vector space, the Whitehead lemmas and Lie algebra extensions (which are related to second cohomology groups). The same three different cases of extensions of chapter 5 as well as the ℱ( M )-valued version of cohomology will be considered. In fact, the relation between Lie group and Lie algebra cohomology will be explored here, first with the simple example of central extensions of groups and algebras (governed by twococycles), and then in the higher order case, providing explicit formulae for obtaining Lie algebra cocycles from Lie gro…

PhysicsAlgebraAdjoint representation of a Lie algebraRepresentation of a Lie groupMathematics::K-Theory and HomologySimple Lie groupGroup cohomologyLie algebra cohomologyAdjoint representationMathematics::Algebraic TopologyLie conformal algebraGraded Lie algebra
researchProduct

Group-Theoretic analysis of the mixing angle in the electroweak gauge group

1996

In this paper the authors provide strong mathematical support for the idea that the experimentally measured magnitude 1 - M{sub W}{sup 2}/M{sub Z}{sup 2} associated with sin{sup 2}{theta}{sub w} in the standard model of electroweak interactions cannot be simultaneously identified with the squared quotient of the electric charge by the SU(2) charge, e{sup 2}/g{sup 2}. In fact, the natural, mathematical requirement that the Weinberg rotation between the gauge fields associated with the third component of the {open_quotes}weak isospin{close_quotes} (T{sub 3}) and the hypercharge (Y) proceeds from a global Lie-group homomorphism of the SU(2) {circle_times} U(1){sub y} gauge group in some locall…

PhysicsHyperchargeParticle physicsPhysics and Astronomy (miscellaneous)Gauge groupGeneral MathematicsLie algebraElectroweak interactionLie groupGrand Unified TheoryCharge (physics)Weinberg angleMathematical physicsInternational Journal of Theoretical Physics
researchProduct

Entropy, Lyapunov exponents, and rigidity of group actions

2018

This text is an expanded series of lecture notes based on a 5-hour course given at the workshop entitled "Workshop for young researchers: Groups acting on manifolds" held in Teres\'opolis, Brazil in June 2016. The course introduced a number of classical tools in smooth ergodic theory -- particularly Lyapunov exponents and metric entropy -- as tools to study rigidity properties of group actions on manifolds. We do not present comprehensive treatment of group actions or general rigidity programs. Rather, we focus on two rigidity results in higher-rank dynamics: the measure rigidity theorem for affine Anosov abelian actions on tori due to A. Katok and R. Spatzier [Ergodic Theory Dynam. Systems…

Pure mathematicsPrimary 22F05 22E40. Secondary 37D25 37C85[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]Rigidity (psychology)Dynamical Systems (math.DS)Group Theory (math.GR)Mathematical proof01 natural sciencesMeasure (mathematics)[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]Group action0103 physical sciencesFOS: MathematicsErgodic theoryMSC : Primary: 22F05 22E40 ; Secondary: 37D25 37C850101 mathematicsAbelian groupMathematics - Dynamical SystemsEntropy (arrow of time)Mathematics[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR]010102 general mathematicsLie group010307 mathematical physicsMathematics - Group Theory
researchProduct

A Comparison between Star Products on Regular Orbits of Compact Lie Groups

2001

In this paper an algebraic star product and differential one defined on a regular coadjoint orbit of a compact semisimple group are compared. It is proven that there is an injective algebra homomorphism between the algebra of polynomials with the algebraic star product and the algebra of differential functions with the differential star product structure.

High Energy Physics - TheoryAlgebra homomorphismPure mathematicsGroup (mathematics)Structure (category theory)FOS: Physical sciencesGeneral Physics and AstronomyLie groupFísicaStatistical and Nonlinear PhysicsAstrophysics::Cosmology and Extragalactic AstrophysicsStar (graph theory)High Energy Physics - Theory (hep-th)Star productMathematics - Quantum AlgebraFOS: MathematicsQuantum Algebra (math.QA)Astrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsOrbit (control theory)Mathematical PhysicsDifferential (mathematics)Astrophysics::Galaxy AstrophysicsMathematics
researchProduct

Infinite lie groups of point transformations leaving invariant the linear equation which describes in the hodograph plane the isentropic one-dimensio…

1991

Abstract The group analysis of the hodograph equation which is equivalent to the non-linear system of one-dimensional isentropic gas dynamics reveals the existence of infinite groups of symmetry in correspondence with particular pressure laws. These turn out to be polytropes with selected indices, as is expected, as well as a new type of pressure. In all these cases the hodograph equation can be transformed, by a suitable change of variables, into the wave equationψ ζ = 0.

Change of variables (PDE)HodographFlow (mathematics)Mechanics of MaterialsPlane (geometry)Applied MathematicsMechanical EngineeringMathematical analysisLie groupInvariant (mathematics)Linear equationSymmetry (physics)MathematicsInternational Journal of Non-Linear Mechanics
researchProduct

Basic theory of solvable Lie algebras and Lie groups

2020

Pure mathematicsLie algebraLie groupMathematics
researchProduct

Finite renormalization effects in the induceds¯dHvertex

1986

The finite renormalization contributions to the s-bard-italicH-italic vertex are examined in the standard model. They are explicitly shown to cancel each other among diagrams, so that the lower bound on the Higgs-boson mass M-italic/sub H-italic/>325 MeV is not affected by such effects.

PhysicsVertex (graph theory)Computer Science::Information RetrievalHigh Energy Physics::PhenomenologyQuark modelFísicaLie groupElementary particleSymmetry groupUpper and lower boundsRenormalizationStandard Model (mathematical formulation)Quantum mechanicsPhysical Review D
researchProduct

Separation of representations with quadratic overgroups

2011

AbstractAny unitary irreducible representation π of a Lie group G defines a moment set Iπ, subset of the dual g⁎ of the Lie algebra of G. Unfortunately, Iπ does not characterize π. If G is exponential, there exists an overgroup G+ of G, built using real-analytic functions on g⁎, and extensions π+ of any generic representation π to G+ such that Iπ+ characterizes π.In this paper, we prove that, for many different classes of group G, G admits a quadratic overgroup: such an overgroup is built with the only use of linear and quadratic functions.

Pure mathematicsMathematics(all)Group (mathematics)General MathematicsQuadratic overgroupLie groupQuadratic functionGroup representationAlgebraUnitary representationIrreducible representationLie algebraMoment mapLie groups representationsMoment mapMathematicsBulletin des Sciences Mathématiques
researchProduct